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Abstract

Decoupling authorization decision logic enables implementation of complex and consistent
access control policies across heterogeneous systems. However, thisis difficult, if not impossible
to implement by exclusively using general-purpose infrastructures such as CORBA Security Ser-
vice. In response to this limitation of CORBA Security service the Object Management Group
(OMG) has adopted a Resource Access Decision (RAD) Facility, an authorization service for
distributed systems, as a pre-final standard. By using RAD facility, developers can implement
systems with authorization logic decoupled from application-specific logic and decentralized
evaluation and administration of the access policies.

This report documents the design and implementation of a Resource Access Decision (RAD)
facility. The report covers the different components that comprise a RAD system, their designs,
functions and interdependencies. The RAD prototype allows studying the validity of the frame-
work and conduction of experiments in the research of distributed access control. Snce the
design of the prototype is heavily influenced by design patterns, the prototype can easily be main-
tained and augmented with more complex access control mechanisms.
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1. INTRODUCTION

Contemporary enterprise systems have increased in size and complexity and tend to be distributed
across organizations with potentialy heterogeneous computing platforms. Organizations in need of such
computing infrastructures rely on existing software middleware such as OMG’s Common Object Request
Broker Architecture (CORBA) to build such systems. CORBA defines a platform and language indepen-
dent object-oriented middleware that allows integration of diverse systems [17]. This integration permits
transparent access to remote services [17][24]. CORBA in general, and CORBA Security in particular,
provides uniform, general-purpose infrastructure with which to build secured object-oriented distributed
systems for a wide variety of application domains. In order to build such systems, however, developers
need to extend this infrastructure and implement all the necessary features required for a particular system.
This is especially true for applications that require complex application domain-specific authorization
decisions [20]. Moreover, developers need to have an architectural view of the system under development.
By architectural view we mean the structures constituting the components of the system, the nature and
role of each component, their interfaces and expected interactions and system-wide properties or semantics
[14]. Unfortunately, these factors are beyond the intended scope of CORBA general-purpose infrastruc-
ture.

As a result, the need to realize these requirements and the lack of general approaches to accomplish
them has lead developers to thightly couple domain-specific authorization and application-specific logic.
By application-specific logic we mean business domain logic which is separate of architectural factors or
requirements such as security, transaction, performance, availability or scalability to name a few. Although
coupling application-specific logic and authorization logic (or other architectural concerns for that matter),
allows developers to realize the intended systems, the separation of the two gives significant benefits. Sys-
tems resulting from this separation are easier to manage since there is a clear separation of responsibilities
between security administrators and developers [12].

In response to this limitation of CORBA Security service, at the time this report is written (2000), a
Resource Access Decision (RAD) Facility [12][20] has been adopted by the Object Management Group
(OMG) as a pre-final standard. RAD facility (or server as it is also referred in this report) provides mecha-
nisms to obtain authorization decisions. By using RAD facility, developers can implement systems with
authorization logic decoupled from application-specific logic and decentralized evaluation and administra-
tion of the access policies. Another advantage of using RAD facility is that it partitions system changes
that can (and will) occur into application-specific and authorization decision changes. That is, changes in
authorization decision logic are contained within the RAD facility without having great impact in applica-
tion-specific logic and vice versa. The RAD facility complements CORBA Security access model, and
allow developers to implement access control mechanisms of arbitrary granularity [12].

As part of research at the Center for Advanced Distributed Systems Engineering (CADSE), a prototype
of the RAD server has been implemented. The prototype allows studying the validity of such a framework
and conduction of various experiments in the research of distributed access control. The prototype is also
used for reasoning about properties and semantics of the prototype itself, other implementations of the
RAD server, and of applications using the prototype. The prototype can serve as a vehicle to study
approaches for implementing extensible, maintainable solutions for authorization decision problems in a



cost-effective manner. This report documents the design decisions made during the implementation of the
prototype and the forces influencing its design and implementation.

The organization of this report is the following: Section 2 gives an overview of the RAD specification
including a brief overview of CORBA and scope of the authorization service. Section 3 introduces the
architecture of the prototype, its components, their functions, interfaces and interactions and observable
properties or semantics of the components. Lastly, section 4 describes the implementation of the prototype,
the design patterns used in the implementation of the components, and the additional implementation-spe-
cific properties of the component.

2. OVERVIEW OF RAD SPECIFICATION

The function of aRAD server isto administer and enforce security policies of varying complexity. Asit
isdefinedin [20], aRAD server isbuilt using CORBA; nevertheless, the same ideas could be implemented
using other middleware technologies such as DCOM or SunRPC. Natice that there isa RAD specification
and a RAD server. The RAD specification stands for the requirements, specifications, interfaces and sug-
gestions that guide the implementation of a CORBA facility as specified in [20] in response to the HRAC
RFP [19]. A RAD server is a concrete, executable implementation compliant with the RAD facility.
Throughout this report, unless specified otherwise, the term “RAD server” denotes the RAD prototype
implemented at CADSE.

2.1. CORBA Overview

CORBA defines the programming interfaces and middleware architecture with which to develop
object-oriented distributed systems. The building blocks of a CORBA-based system are CORBA objects,
and processes executing programs that contain CORBA objects are referred to as CORBA servers (or sim-
ply servers) [5]. In a CORBA-based system, a CORBA object makes its services available to other poten-
tially distributed CORBA objects. This involves giving CORBA objects a representation which can be
manipulated and managed by other CORBA objects [15]. To that end, services provided by a CORBA
object are defined through interfaces written in OMG Interface Definition Language (IDL). Clients using
the operations provided by a CORBA object only know about its interface and need not worry about the
implementation and locality of the CORBA object. That is, a client treats a CORBA object the same way it
treats objects in the client address space.

CORBA interfaces can be categorized as CORBA services and CORBA facilities [19]. CORBA ser-
vices are general purpose services fundamental to the construction of CORBA-based systems or universal,
domain-independent services. CORBA facilities are also general interfaces applicable to most domains.
The difference is that CORBA facilities are end-user oriented in nature. In [19] and [20], RAD is specified
as a CORBA facility.

2.2. Scope of Authorization Service

A RAD server implements mechanisms for obtaining authorization decisions [20]. To understand what
we mean by “authorization decision”, it is necessary to introduce several concepts pertaining to access
(security) policies and access control. &atess policy defines the security requirements of a system.
These security requirements govern how and wvghigiipals (users or systems running on behalf of users)
operate and access system resources [6]. These access policies are enforced byatwassairol
mechanisms which grant or deny principals’ requests for access to resources [6].

1. Some authors argue that distributed objects such as CORBA objects cannot be treated as objects located in asingle
address space since issues such as latency and partial failure are intrinsic observable properties of their interfaces [11].



Access control mechanisms enforce (mediate) grant or denial of requests by subjects (or principals) for
access to secured resources. During mediation, access control mechanisms evaluate applicable access pol-
icies, and the results from these eval uations determine whether to grant or deny arequest. The decision to
grant or deny access to a resource based on an access policy evaluation is known as an authorization deci-
sion.

In a traditional scenario, the application server implements both the access control and authorization
decision logic (Figure 1). With RAD, the authorization decision logic is moved to an authorization server,
and the application server is expected to enforce the authorization decision (Figure 2). Thus, usage of the
RAD server allows decoupling of authorization logic from application logic. Also, the RAD server is used
to provide a standard interface to security-aware clients for requesting access control decisions [20].
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Figure 1: Authorization logic implemented in the application server
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Figure 2: Authorization logic residing in RAD (authorization decision) server

In RAD, the reply sent to the application server can either be the authorization decision (grant/deny) or
an exception indicating an internal failure while computing an authorization decision. This stressestherole
of the RAD as an access decision server (not as an access control server). As a consequence, the applica
tion server must not only enforce the authorization decisions, but must also make the policy enforcement
decisions about how to proceed during exceptiona circumstances [20]. It is important to understand that
the RAD server is concerned with implementing authorization decision logic at the application level.
Issues such as access control at the operating system level, authentication and intrusion detection falls out-
side the current scope of the RAD server.

3. ARCHITECTURE OF RAD SERVER

In this report, the architecture of the RAD server describes the components that make up the RAD
server, their externally visible properties and the interaction among them [14]. By component we mean a
replaceable unit of computation that provides services or operations to other services and may use opera-



tions on other components. By externally visible properties we mean the assumptions other components
can make about the component such as performance characteristics and services provided. This definition
aso includes behavior discernible from the point of view of another component [14].

3.1. Componentsof RAD Server

A RAD server is composed of the following components [12][20]:
AccessDecision Object (ADO)

PolicyEvaluatorL ocator (PEL)

DynamicAttributeService (DAS)

DecisionCombinator (DC)

PolicyEvaluator (PE).

Application servers (clients from the RAD server point of view) interact with RAD server only through
the ADO.L That is, the ADO acts as afacade that provides asingle, uniform interface to the other interfaces
that make the RAD server [8]. Given aresource name (a secured resource identifier), there can be zero or
more access control policies governing access to it. The evaluation of such policies is done by the Policy
Evaluator (PE) objects.

After evaluation of a policy, a PE returns a grant or deny access (yes/no) or “don’t know” answer. A
“don’t know” answer is used by a PE when it cannot perform an evaluation. Also, A PE object can evaluate
one or more access policies for a given resource. However, access policies associated with a resource are
not necessarily evaluated by a single PE object. Therefore, we have a one-to-many relation from PE
objects to access policies and a many-to-many relation from access policies to resources (Figure 3).

o~ ® D P

DecisionResult
Policy returned by ACCESS_DECISION_ALLOWED
ACCESS_DECISION_NOT_ALLOWED
— ACCESS_DECISION_UNKNOWN
0”* T
0..* control access to
evaluates T
0..1 TT—— 0.
<<IDL Interface>> | g « <<maintained by PEL>> 0% <<IDL Structure>>
PolicyEvaluator ResourceName
0..* 0.+
combi evaluations of <<maintained by PEL>>
0. 0.1

<<IDL Interface>>
DecisionCombinator

Figure 3: Relationship among PE’s, access policies, resource names and DC'’s

Since there can be more than one access policy for a resource name, RAD uses a Decision Combinator
object to combine all policy evaluations into a single grant/deny authorization decision which is sent back
to the client. A DC objects providescambination policy. For example, a DC can implement @en
world or closed world policy.2 More complex decision combination policies can be implemented such as
granting access based on a majority vote or on hierarchies of PE objects where a decision from a higher-

1. The RAD ADO has different semantics from the CORBA sec object of the same name even though they have similar

functions [20].

2. With open world combination strategy, a DC returns yes (grant access) only if none of the PE returns a no (deny). A
closed world combination strategy grant access only if all PE’s grant access. In essence, open world strategy grants
access unless there is an explicit denial from a PE, and closed world strategy grants access only explicit grant access
from all PE’s.



level PE can override decisions from lower-level PE objects. When a PE cannot perform its evaluations
and returns “don’t know”, the combination policy used by DC will determine whether it returns “grant” or
Hdenyﬂ'

L ocating PE and DC Components

Whenever the ADO receives an authorization decision request, it needs to know what DC and PE(s) are
applicable to the given secured resource. To this end, the ADO uses the PolicyEvaluatorLocator (PEL)
object which decides what DC and PE(s) to use. A PEL maintains the relations of DC’s, PE’s and resource
names, and isolates the ADO from potentially complex mechanisms for resolving and administering these
relations. Resolving mechanisms can range from a simple search in a local database to resolving references
to remote objects. Administrative mechanisms can range from setting default DC and PEs for all secured
resources to associating these objects to PE objects to group of secured resources matched by a resource
name pattern (please see Section 4.3).

Dynamic Attributes

To evaluate an access policy, a PE needs to know what are the resource hame, the intended operation on
the resource, and the characteristics of the principadscarity attributes. These security attributes are
used by PE objects as criteria for evaluating access control policies. It is based on these security attributes
that an authorization decision is mad&he principal’s security attributes can contain both static and
dynamic attribute$. Static attributes represent the characteristics of the principal set by an administrator
(e.g. user name and role) which do not change while a principal operates in the system [20].

On the other hand, a dynamic attribute can only be determined at the time an access request takes place.
These dynamic attributes can denote relationships between a principal and a resource [20]. For example, a
physician can access a patient's medical records only if he is the attending physician for the patient. This
“attending physician” relationship between physicians and patients is subject to change from one authori-
zation request to another. In this scenario, the ADO delegates the discovery of dynamic attributes to a
Dynamic Attribute server (DAS). The DAS itself can become a proxy [7][8] to other, more specialized
dynamic attribute servers or SDAS.

Control Flow

In summary, an authorization decision is computed through a sequence of operations carried out by the
RAD components (Figure 4). The following algorithm describes how RAD components compute an autho-
rization decision:

Algorithm 1 Computing One Authorization Request

1) An application server (AS for short) contacts the ADO server for an authorization decision to per-
form an operation P on resource R by aprincipal U with alist (or set) of security attributes {a} .

2) The ADO object requests the PEL object for referencesto a DC and any PE servers associated to the
resource R.

3) The PEL returnsto the ADO areferenceto aDC and aset {pe} with zero or more references to PE
objects. {pe} represents the PE objects associated with resource R at the time the request for authori-
zation decision takes place.

4) The ADO requests the DAS for any dynamic attributes of U with respectto R and P at the time the
reguest for the authorization decision takes place.

1. The authorization decision obtained from a policy evaluation can a so be determined from implicit parameters such as
the time the request is made. How thisimplicit parameters are handled or configured are outside the scope of this report.
2. For more information on security attributes, operations and resource names and their definitions, please refer to
[12][18] and [20]



5) The DASreturnstothe ADO aset {a'} to be used in obtaining an authorization decision. Notice that
the contents of {a'} depend on the configuration of the DAS as well as of what dynamic attributes are
available at the time the request takes place. The DAS can add dynamic attributes or remove existing
attributes from set {a} .

6) The ADO sends to the DC a set of PE servers {pe} for evaluation of policiesthat control accessto
the resource R.

7) The DC requests each PE in {pe} to authorize or deny the operation P on the resource R given the
security attributes {a'} of the principal.

7.1) Each PEin {pe} evaluateszero or more access policies associated with resource R. Depending
on the implementation of the PE server, it will combine all these policiesinto asingle YES/NO/
DON'T KNOW reply. This reply is then returned to the DC server.

8) The DC combines all replies from all the PE serversi) , and combines them into a single grant
or deny response. This response, the authorization decision, is returned to the ADO server.

9) The ADO returns the authorization decision from the DC server to the AS server.

10) The AS server receives the authorization decision from the ADO server and enforces it. The manner
in which the authorization decision is enforced depends on the implementation of the AS server.
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Figure 4: Sequence Diagram - 1 Authorization Request

3.2. Computational M odel

The RAD specification [20] introduces several standard interfaces that can be classified as run-time and
administrative interfaces. The run-time interfaces describe the objects and operations a client usesto obtain
an access decision from the RAD server. The administrative interfaces, on the other hand, describe the
objects and operations involved in the configuration of the RAD server.

The implementation of the prototype RAD server introduces extensions to the required interfaces (see
Figure 5). The extensions to the run-time interfaces provide operations to get references to administrative
interfaces. Extensions to the administrative interfaces provide operations for gracefully shutting down
components. Table 1 lists the standard and extended interfaces, and table 2 lists the classes implementing
the extended interfaces and the packages in which the classes are organized.1
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Figure 5: RAD Server Computational Model - Implemented Interfaces only.

RAD Component Standard IDL Interface Extended IDL Interface

ADO AccessDecision AccessDecisi onExt
AccessDecisionAdmin AccessDecisionAdminExt

PEL PolicyEvaluatorL ocator
PolicyEvaluatorL ocatorAdmin
PolicyEvaluatorL ocatorBasicAdmin PolicyEvaluatorL ocatorAdminExt
PolicyEvaluatorL ocatorNameAdmin
PolicyEvaluatorL ocatorPatternAdmin

DAS DynamicAttributeService DynamicAttributeServiceExt

DynamicAttributeServiceAdminExt

DC DecisionCombinator

PE PolicyEvaluator PolicyEvaluatorExt
PolicyEvaluatorAdmin PolicyEvaluatorAdminExt

Table 1: Implemented interfaces

RAD Component Java Package

ADO edu.fiu.cadse.rad.ado
PEL edu.fiu.cadse.rad.pel
DAS edu.fiu.cadse.rad.das
DC edu.fiu.cadse.rad.dc
PE edu.fiu.cadserad.pe

multiple inheritance.

1. At thetime thisreport iswritten (2000), the prototype did not have an implementation for the PolicyEval uatorL ocator-

Table 2: Implemented packages

4. IMPLEMENTATION

Although the RAD components have different functions, their implementation faced two main prob-
lems. The first problem was to devise an initialization mechanism common to all RAD components. The
second problem was to implement IDL interfaces using a single class even though Java does not support

NameAdmin and PolicyEvaluatorL ocatorPatternAdmin, nor did it introduce extension interfaces for the DC.



4.1. Component Implementation and I nitialization

A RAD component can have multiple interfaces (run-time and administrative). Since each administra-
tive interface is used to configure the run-time interface of a component (which may require some degree
of interdependency), it was be desirable that each component has a single class implementing both the run-
time and administrative interfaces. Another desirable property was to have a generic approach to initialize,
or bootstrap the components.

Thisinitialization mechanism should be transparent to the component. The meaning of this requirement
is twofold. First, changes to the initialization logic should not introduce changes in the implementation of
the components. Likewise, a component should not expect a particular initialization procedure insofar as
this initialization provides to the component a working environment on which it can interact with other
components as expected.

Implementation of Multiple Interfaces

In Java, an IDL interface is implemented using a class which provides the minimum mechanisms
needed to interact with the ORB environment and defines public methods corresponding to the operations
and attributes of the IDL interface [16]. However, since Java does not support inheritance of multiple
classes, inheritance could not be used for implementing the run-time and administrative IDL interfaces.

To work around the single-inheritance restriction of Java, components were implemented using a dele-
gation mechanism known as Tie Approach [5]. In the tie approach, atie class implements a given CORBA
interface or interfaces.! However, the tie only implements the minimum mechanisms needed to interact
with the ORB environment. The actual implementation of the component’s operations is done idehegate
class implementing th€omponentOperation interface. Figure 6 illustrates an IDL interface being imple-
mented usingie objects. With the tie approach we obtain greater flexibility in composing objects since the
delegate class is not restricted to inherit from any particular class. The only requirement is that the delegate
class implements théomponentOperation interface?

<<IDL Interface>>

ComponentimplBase Component

service()

service()

{tie.service()=delegate.servicelmplementation()}

<<Interface>>
tie delegate ComponentOperations

‘ servicelmplementation()

registers with Z>

ComponentO perationsimpl

BOA

{delegate object that implements
the Component operations}

Figure 6: Implementing a CORBA object using the tie approach

Object Composition
During design, it became evident that RAD components such as DC and PE can exhibit different behav-
ior. For instance, a DC can combine results from multiple PEs in more than one way. One solution would

1. Tie approach in the CORBA community means the use of delegation over inheritance when implementing IDL inter-
faces[5]. In principle, thisis similar to the Bridge pattern described in [7][8].
2. One drawback of delegation is that systems that rely on object composition may be more difficult to comprehend [8].



be to implement one class per component behavior. However, this would create many related classes that
differ only in their behavior. The solution we chose was based on the Strategy pattern.

In Srategy pattern, a Context class implements the logic common to al other implementations of a base
class (a RAD component in our case), and a Srategy class (interface in our case) provides behavior spe-
cific to an implementation (Figure 7). Strategy pattern allowed us to implement families of algorithms
related to each RAD component (strategy classes) and common functionality (context) classes [7][8][13].

c i olB <<IDL Interface>>

omponentimplcase — Com ponent
service() service()

Strategy Pattern
/ \
c Context —~ <<Interface>>
omponentContex Com ponentStrategy
. theStrategy
service() serviceLogic()

{ComponentContext.service=theStrategy.serviceLogic()}

StrategyImplementation

service Logic()

{Strategylmplementation provides implementation for serviceLogic()}

Figure 7: Implementing a server using Strategy pattern

In the implementation of the RAD prototype, we define strategies as Javainterfaces. In this case, com-
ponent contexts are Java classes implementing the services published by the strategy interfaces. With the
implementation of the strategies for the DC and PE components, we took a step further: their implementa-
tion is based on a design pattern known as Template (Figure 8). The idea behind Template pattern (or Tem-

<<Interface>>
ComponentStrategy

serviceLogic()

i

AbstractStrategy

. e X Template Pattern
<<virtual>> specificAlgorithm() — ——
serviceLogic()

commonBehavior() ‘

A
| | L

Strategy A Strategy B Strategy C

specificAlgorithm () specificAlgorithm () specificAlgorithm ()

AbstractStrategy.serviceLogic()=CommonBehavior * specificAlgorithm ()

Figure 8: Extending an interface using template pattern

plate Method pattern) isto define an outline or skeleton of an algorithm in a base class while leaving some
steps to be defined in subclasses [ 7][8][13].

Template pattern was used in the design of DC and PE because implementations of these components
tend to share common functionality. For example, implementations of DC need to resolve references to PE
objects received from the ADO regardless of the decision combination policy being implemented. Simi-
larly, implementations of PE need to maintain associations of policies to resource names independently of

10



how the policies are maintained and evaluated. Such common functionality or behavior can be imple-
mented in an abstract strategy class (Figure 8). This abstract strategy class can later be extended or refined
to obtain specific implementations of DC and PE.

Run-time and Administrative I nterfaces

Each RAD component (with the exception of DC) has a run-time and an administrative interface. Fig-
ure 9 illustrates our approach to implement both interfaces. The implementations of ADO, DAS and PE
follow such an approach. PolicyEvaluatorLocator (PEL) does not have an extension to its administrative
interface as it will be explained with more details in Section 4.4.3. The DecisionCombinator, on the other
hand does not have an administrative interface due to its ssimplicity (see Section 4.4.5.)

Access Decision View Adminstration View

<<IDL Interface>> <<IDL Interface>>
Authorization Interface Administration Interface

<<IDL Interface>> <<IDL Interface>>
Authorization Extension Administration Extension

Implements
[ common behavior [
tie
‘ tie

N <‘<ID!_ Interface>> . ‘ <<IDL Interface>>
Authorization Ext Operations Admin Ext Operations

Mget_admin_interface() T ‘( Component Context 77""’77'}> Mshutdown ()

Environment setting/detection T~
: R theStrate
Remote object localization / ™~ 24

Registration with BOA ‘
Publishing references <<Interface>>

Exception handling / Component Strategy
Abstract Strategy Implgmenls .
specific behavior
bootstraps Z>
‘ Strategy A Strategy B Strategy C

Start (Loader)
MspecificAlgorithm () MlspecificAlgorithm () WspecificAlgorithm ()

Figure 9: General approach for implementing a RAD component

Component Initialization

Each RAD component in our implementation depends on a Sart classfor itsinitialization. The required
environment for each component may differ from one to the other; however, al start classes follow a simi-
lar initialization process. This processincludes resolving references to remote CORBA objects, creation of
objects, vendor-dependent ORB detection, registration of interfaces with BOA, and exception handling.
Figure 9 illustrates our general approach to implement the run-time and administrative interfaces and ini-
tialize or bootstrap the component or server.

4.2. AccessDecision Object

The run-time and administrative interfaces of the AccessDecision Object (ADO) are represented by the
AccessDecision and AccessDecisionAdmin interfaces [20]. Clients communicate with the RAD facility
through the AccessDecision interface. Meanwhile, the function of the AccessDecisionAdmin interface isto
provide a means to configure the ADO object. Configuring the ADO object means setting its references to
PEL and DAS objects. Its extension, the AccessDecisionAdminExt also provides a means for shutting
down the ADO object. The extension to the AccessDecision interface, AccessDecisionExt provides mecha-
nism to obtain areference to the administrative interface.

11



Aswill be described in section 4.4.1, we used a single Java object to implement the AccessDecisionExt
and AccessDecisionAdminExt, the ResourceAccessDecider class in edu.fiu.cadse.rad.ado package (see Fig-
ure 10).

<<IDL Interface>>
<<IDL Interface>> AccessDecisionAdmin
AccessDecision (from ResourceAcc essD ecision)

(from ResourceAccessDecision) Mget_policy_evaluator_locator()

®access_allowed() ®set_policy_evaluator_locator()
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Mset_dynamic_attribute_service()
1.1
<<IDL Interface>> 0.* <<IDL Ir)tgrface>>_
Acces sDecisionExt AccessDecisionAdminExt
. . s hutdown ()
‘ +theAccessDecisionAdmin ‘
<<Interface>> <<Interface>>
AccessDecisionExtOperations Access DecisionAdm inE xtOp eratio ns
A tie these two /
\ interfaces ~ /
< 7

ResourceAccessDecider

Figure 10: Implementation of the AccessDecision object

4.3. PolicyEvaluator L ocator

PolicyEvaluatorLocator (PEL) is represented by PolicyEvaluator Locator (run-time) and PolicyEval ua-
torLocator Admin (administrative) interfaces. The function of the PEL object isto return a DecisionCombi-
nator (DC) and a list of PolicyEvaluator (PE) objects for authorization decisions on a resource name
[12][20]. In principle, a PEL could return 1) default DC and PE objects for all resource names, 2) DC and
PE objects specifically associated with a given resource name, or 3) DC and PE objects associated with a
family of resource names which can be matched with a resource name pattern (please see Section ).

The RAD specification [20] introduces three administrative interfaces for the PEL component: Poli-
cyEval uator Locator BasicAdmin, PolicyEval uator Locator NameAdmin and PolicyEvaluator Locator Patter-
nAdmin. The PolicyEvaluatorLocatorBasicAdmin is used to administer default associations between
PolicyEvauators (or DecisionCombinators) and resource names [20]. The PoalicyEvaluatorLocator-
NameAdmin is used to set explicit associations between DC and PE objects and resource names. These
associations take precedence over default associations set through PolicyEval uator Locator BasicAdmin.

The PolicyEvaluatorLocator PatternAdmin is used to administer associations based on resource name
patterns. As with PolicyEvaluator Locator NameAdmin, associations set by PolicyEvaluatorLocator Patter -
nAdmin take precedence over default associations set through PolicyEvaluator LocatorBasicAdmin. The
prototype of the RAD server does not include the PolicyEval uator Locator NameAdmin and PolicyEval ua-
torLocator PatternAdmin, yet. Please refer to the RAD specification [20] for more information on these
interfaces.

The RAD server prototype extends PolicyEvaluator Locator BasicAdmin into the PolicyEval uator Loca-
tor AdminExt interface. This interface provides mechanisms to shutdown the PEL object. However, unlike
the AccessDecision interface, PolicyEvaluatorLocator is not extended. Thisis because PolicyEvaluatorLo-
cator itself provides mechanisms to get referencesto its administrative interface [20].

The object that implements PolicyEvaluator LocatorAdminExt and PolicyEvaluatorLocator is Poli-
cyEvaluatorLocatorContext (in edu.fiu.cadse.rad.pel package), and its implementation follows tie
approach (Figure 11). At the time this report is written (2000), PolicyEvaluatorLocator Context returns
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default DC and PE objects. However, PolicyEvaluatorLocatorContext can become more complex and
return different DC and PE objects depending on the resource name.

<<IDL Interface>>
<<IDL Interface>> PolicyEvaluatorLocatorBasicAdmin
PolicyEvaluatorLocator 0..* 1 (from ResourceAccessDecision)
(from ResourceAccessDecision) S —{[Mset_default_evaluators()

®Mget_policy_decision_evaluators() :22:732;23:I7g2$ E:::Ig:g

% +basic_admin Mget_default_evaluators()
tie ) [ <<IDL Interface>>
mechanism PolicyEvaluatorLocatorAdminExt

~

—

PolicyEvaluatorLocatorContext
Mset_default_evaluators()
Mget_default_combinator() . +_strategy ‘ PolicyEvaluatorLocatorStrategy ‘
®set_default_combinator() ‘ |
®get_default_evaluators()
®get_policy_decision_evaluators()

Figure 11: Implementation of PolicyEvaluatorL ocator

Resource Name Patterns

A resource name pattern describes a name pattern composed from combinations of symbols using regu-
lar expression syntax as defined in [1]. For example, the regular expression (resource name pattern) “a*”
would match all strings (resource names) that begin with the character ‘a’. For more information on
resource name patterns, please see [20], and for regular expression syntax and usage, please see [1][10].

4.4. Dynamic Attribute Service

DynamicAttributeServicéDAYS) is represented by the interface of the same name. Unlike the previous
components, the DAS does not have an administrative interface [20]. However, the RAD server prototype
introduces a DAS administrative interface, DynamicAttributeServiceAdminExs in the design of PEL,
tie approach is used to design a DynamicAttribute Service Conteatbject that implements the extended run-
time and administrative interfaces of the DAS (Figure 12). The design of DynamicAttributeServiceContext
follows a Strategypattern; the mechanisms used to obtain the principal’s security attributes applicable for
an authorization decision are implemented by an object ofDypamicAttributeServiceStrategy. This is
because the nature of security attributes and the means to manipulate and retrieve them can change from
one organization to another.

When the ADO computes an authorization decision, it contacts the DAS (using the DAS
get_dynamic_attributes operation), and passes to the DAS a list of security attributes, a resource name and
an operation name (step 4, Algorithm 1). These three values are then passed to the object implementing the
strategy interface (_strategy relation, Figure 12) which eventually returns a list of security attributes appli-
cable to the authorization decision to the ADO. An implementation of DAS is free to add, remove or
replace security attributes from the original list [20]. Furthermore, the security attribute list returned by
DAS can change from one authorization decision to another. This dynamic nature of DAS influences
implementations of the DynamicAttributeServiceStrategy interface.

RAD prototype includes one such implementation BtleingDynamicAttributeService object (Figure
12). The function oEchoingDynamicAttributeService is to return the same security attribute list it receives
from the ADO. This implementation can be used to model the situation when there are no dynamic
attributes (or when they are not needed) to obtain a authorization decision. Other implementations of
DynamicAttributeServiceStrategy are possible which may follow a design usiiegiplate pattern (Figure
7).
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<<IDL Interface>>
DynamicAttributeService
(from ResourceAccessDecision)
Mget_dynamic_attributes()

Z} //,////////;;; in Z>

< ‘

<<IDL Interface>>
DynamicAttributeService AdminExt

Mshutdown ()

<<IDL Interface>>
DynamicAttributeService Ext

7

<<Interface>> <<Interface>>
DynamicAttributeServiceExtOperations DynamicAttributeService AdminExtOperations
tie AN
mechanism

S~ T —

‘ DynamicAttributeServiceContext ‘ EchoingDynamicAttributeService

Wget_dynamic_attributes()

Strategy Pattern D\
#_strat -
-stategy A _—

<<Interface>>
DynamicAttributeServiceStrategy
Wget_dynamic_attributes()

Figure 12: Dynamic Attribute Service
4.5. Decision Combinator

Compared to the other RAD components, DecisionCombinator (DC) has the simplest design. In the
RAD prototype, DC does not have an administrative interface, nor doesit have an administrative extension
interface as the DAS component. A DecisionCombinatorContext class implements DecisionCombinator
IDL interface using Tie approach (Figure 13). Although it would be simpler to use inheritance for the
implementation of the DecisionCombinator Context class, its tie-based design would ease the addition of
an administrative interface if there is a need for it.

DC encapsulates the policy that dictates how to combine decisions results from multiple PolicyEval ua-
tors (PE) into asingle authorization decision [12][20]. This “decision combination” logic is delegated to an
object implementindpecisionCombinator Srategy interface. The RAD server prototype includes an object
implementing this interfacébstractAndOr Combinator. This class implements a logical AND on decision
results obtained from multiple PE compone#isstractAndOr Combinator is further refined (usingem-
plate pattern) with OpenWorldAndOrCombinationPolicy and ClosedWorldCombinationPolicy classes
(Figure 13).

In RAD prototype, OpenWorldAndOrCombinationPolicy returns “YES” (access granted) if all PE
objects return “YES” or “DON'T KNOW". On the other han@|osedWorldAndOrCombinationPolicy
implements a stricter policy: grant access only if all PE objects return “YASsttactAndOr Combina-
tionPolicy is only one example of holecisionCombinator Srategy can be implemented. Other examples
of implementations are strategy classes using majority votes or hierarchies of PE’'s where the decision
result of one PE can override the decision results of other PE’s.

4.6. Policy Evaluator

The function of a PE is to evaluate one or more encapsulated access policies to obtain an access deci-
sion on a resource given a list of principal’s security attributes and an operation name [12][20]. In the pro-
totype, PolicyEvaluator (PE) has the most complex design of all. As with most RAD components, it has
run-time and administrative interfaces with respective extensions. Basee Approach PolicyEval ua-
torContext implements both run-time and administrative interfaces. The design of PolicyEvaluatorContext
usesStrategy pattern as it relies oRolicyEvaluator Srategy interface for evaluation of policies (Figure
14).
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RAD prototype has an implementation of PolicyEvaluatorStrategy interface, AlwaysGrantDenyAb-
stractEvaluator which serves as atemplate for AlwaysDenyEvaluator and AlwaysGrantEvaluator. Astheir
names imply, AlwaysDenyEvaluator always denies access to any resource whereas AlwaysGrantEval uator
aways grants access.! More complex implementations of PolicyEvaluator Srategy are possible; examples
of these are filesystem permissions and role-based access control (RBAC)2 evaluators (see Figure 14).
How such evaluators can be implemented is outside the scope of this report, and are left as part of future
refinements of RAD prototype.

To know what access palicies to evaluate given input parameters (from DC), aPolicyEval uator Context
must maintain relationships between access policies and resource names. The implementation of these
associations is based on Srategy pattern.That is, PolicyEvaluator Context delegates the implementation of
such associations to a class implementing the PoliciesByResourceNameMap interface (see Figure 14). By
using this interface, developers can implement associations using any form of storage suitable to their
needs independently of the implementation of PolicyEvaluator Srategy.

RAD prototype provides a default implementation of PoliciesByResourceNameMap, NullPoliciesByRe-
sourceNameMap (see Figure 14). This implementation follows what is known as Null Object Pattern [13].
NullPoliciesByResourceNameMap implements a do-nothing version of PolicyByResourceNameMap inter-
face. Such object relieves PolicyEvaluator Context from testing for null values before accessing the meth-
ods of PolicyByResourceNameMap [13].

5. SUMMARY

CORBA Security service provides general-purpose infrastructure with which to build secured object-
oriented distributed systems. However, complex application domain specific authorization decision logic
aredifficult, if not impossible to de-couple from application logic using only CORBA Security service. To
overcome this limitation, at the time this report was written (2000), OMG adopted a Resource Access
Decision (RAD) facility as a pre-final standard. By using RAD facility, developers can implement systems
with authorization logic decoupled from application-specific logic and decentralized evaluation and
administration of the access policies. The RAD facility complements CORBA Security access model, and
allow developers to implement access control mechanisms of arbitrary granularity.

A prototype of the RAD server has been implemented to study the validity of the framework, to con-
duct experiments in the research of distributed access control and reason about properties of application
systems using the prototype and of the prototype itself. Also, the RAD prototype provides smple, default
algorithms for policy evaluation, decision combination, and acquisition of dynamic attributes. Since the
design of the prototypeis heavily influenced by design patterns, the prototype can easily be maintained and
augmented with more complex access control mechanisms.

1. Sincethe decision result of a PE isaternary value [20], another possible implementation would be a policy evaluator
strategy that always returns “don’t know”.

2. Access control disciplines are explained in [22]. For more information on role-based access controls in particular,
please refer to [23].
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<<IDL Interface>>
DecisionCombinator

combine_decisions()

<<Interface>>
DecisionCom binatorOperations

Strategy
Pattem

DecisionC om binatorContext / <<Interface>>
DecisionCombinatorContext() DecisionCombinatorStrategy
combine_decisions() o+ -strategy 11 makeDecision()

AbstractAndOrCombinator

shouldDeny()
makeDecision()

Template
Method Pattemn E— 7‘

OpenW orldAndO rCom binationPolicy ‘ ‘ ClosedW orldAndOrCombinationPolicy

{grant access if no PE returns "NO"} {grant access if all PE’s return "YES"}

Figure 13: DecisionCombinator

<<IDL Interface>>
PolicyEvaluator
evaluate()

<<IDL Interface>> <<Interface>>
PolicyEvaluatorExt [~ PolicyEvaluatorExtOperations

PolicyEvaluatorContext

+thePolicy Ev aluatorA dminExt set_policies()

add_policies()
list_policies()

<<IDL Interface>>
PolicyE valuatorAdmin

sel_pulif:i.es() Poli <<E|D|-I|"1i”f'=‘AC:>>_ Ext <<Interface>> Ze:fdefaul!tipolicy()
add_policies( t— PolicyEvaluatorAdminEXt \— pyjicyevaluatorAdminExtOperations elete_policies()
list_policies () shutdown() evaluate()

set_default_policy ()

delete_policies
-P 0 Null Object <<Interface>>
Pattern PoliciesByResourceNameMap |0--*

clear()
NullPoliciesByResourceNameMap | hasResourceName()
getPolicies()

isEmpty ()
putPolicies()
remov ePolicies()

<<Interface>>
PolicyEvaluatorStrategy
evaluateUsingPolicy ()

RBACEvaluator _ Y VY — — areV alidP olicies()

e getD af ultPolicy()

- 7

‘ FileSystemPermissionsEvaluator
‘ AlwaysGrantDenyAbstractEvaluator ‘

T

UnixFile Syssem Perm ision sEvaluator ‘ ‘ NtfsFileSystemPermissionsEvaluator ‘ ‘ AlwaysDenyEvaluator ‘ ‘ AlwaysGrantEvaluator ‘

Figure 14: PolicyEvaluator
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